The Spectrum-9100 is a fully integrated functional test system, ready to deliver high-performance digital, analog, mixed-signal, and serial bus testing. For factory, depot, and intermediate test applications that require custom hardware and software integration, the Spectrum-9100 provides a fully developed, fully documented set of core building blocks. It’s equipped for easy interface to computer workstations and ready for integration with application-specific instruments and software tools. The Spectrum-9100’s advanced engineering and quality workmanship make operation, test development, and maintenance simple and cost-efficient.

The Spectrum-9100 combines advanced functionality, switching, software, self-test and calibration capabilities to provide users with the best hardware/software platform possible. It incorporates industry standards that support multiple Application Development Environments (ADEs), a host of TPS development processes, and a multitude of adapters. Running under the Windows operating system it uses standard test system bus protocols including GPIB, LXI, PXI, and VXI and employs a variety of programming languages and ADEs, as well as specialized, in-house programming tools.

Features

- Highest performance functional tester for analog, digital, mixed-signal and serial bus testing
- Performance and flexibility to test products all the way from board level to completed assembly level
- Future ready, open standards-compliant platform, adaptable to changing requirements
- Proven Teradyne compatibility maintains TPS investment
- Proven highly effective in replacing non-Teradyne legacy ATE
- Multiple parallel digital functional solutions supporting speeds up to 50 MHz (100 MHz interleaved)
- Concurrent serial bus test supports MIL-STD-1553, RS-232, RS-422, RS-485, ARINC 429 and many more
- Cost-effective, reliable system accommodates modular expansion
- Supports a multitude of adapters, software products and TPS development tools in the TestStudio™-based ATE operating environment
- Backed by Teradyne’s global service and support network
- Standard maintenance classes offered at Teradyne, or in your facility

The Industry Standard for High-Performance Functional Test

The Spectrum-9100 eliminates problems associated with compliance issues, time consuming validation tests and multiple resource switching errors. Its base configuration is a single-frame, 19-inch system that accommodates VXI and PXI chassis for housing digital and analog VXI/PXI instrumentation, GPIB and LXI instrumentation and user power. The system comes complete with power distribution and thermal management. The system’s PC is host to Teradyne’s TestStudio, a feature-rich web-based ATE operating environment.

Optional instrumentation is available for constructing a customized test environment, including Teradyne’s Di-Series of Digital Test Instruments with fault dictionary and guided probe diagnostics. Other options include the Bi4-Series of Synthetic Serial Bus Test Instruments and the highly parallel Ai7-Series of Analog Test Instruments. The Ai7-Series includes a digital multimeter, arbitrary waveform generator, digitizer, counter timer and digital oscilloscope capability. The Spectrum-9100 can also be configured with commercially available instrumentation to meet user-specific needs.

Modular, Standards-Based Design Means Cost-effective System Configuration and Future Expansion

With the Spectrum-9100, you’re not locked in to a single, proprietary system configuration. The open, standards-based architecture of the Spectrum-9100 sets the standard for flexibility and scalability.

Choose the component software capabilities you need. Scale up the features to meet your changing needs. Buy exactly what you need,
when you need it—with confidence. When your product or application requirements change and new test strategies and tools become available, your Spectrum-9100 Series test platform can be easily reconfigured to meet your needs.

Instrument Options

Industry-standard architecture, superior performance, Di-Series instruments are comprised of one optional Utility Card and up to 12 Channel Cards. The Di Utility Board supplies guided probe capability, utility bits and system resources to provide compatibility with previous generation digital instruments, including Teradyne’s M9-Series and L-Series. Each Di Channel Card can operate as an independent instrument, or when populated in contiguous backplane slots, can act as a single instrument providing up to 768 channels of synchronous parallel digital test capability. If a full 768 channels are not needed today, smaller configurations can be ordered, and additional channels can be added in the field while maintaining TPS compatibility.

Di-Series Digital Test Instruments

The Di-Series instruments offer proven compatibility with Teradyne’s M9-Series and L-Series digital instrumentation, guided probe, and fault diagnostic diagnostics, while offering increased test capability. The Di’s flexible design is ideally suited for handling the asynchronous and differential signals often required to properly test many LRUs. Voltage ranges from -30 volts to +30 volts, and data and clock rates to 100 MHz using channel pairing provide digital test capability to meet the most demanding voltage and frequency requirements.

Off-line TPS development using industry-standard LASAR™. Integration with Teradyne’s LASAR simulation software enables off-line test development with minimal time required for test program integration.

Ai7-Series Analog Test Instruments

Ai7-Series of VXI Analog Test Instruments provide superior performance with highly parallel test capability.

Tester-Per-Pin Analog Test Architecture. Teradyne’s Ai7-Series of analog test instruments are the first mixed-signal subsystems on a card, designed specifically to address the requirement for real-time signal simulation and functional test.

The single Slot Ai-760 family of analog test instruments start with 8 MFA (Multi-Function Analog) channels, with each MFA channel offering 200 MS/s Timer Counter, 200 MS/s 14-bit ARB, and 50 MS/s 12-bit digitizer functionality. The configuration can be enhanced by adding 8 additional MFA Channels, a 6.5 digit digital multimeter (DMM) and a 1 GS/s digital oscilloscope (DSO).

The single Slot Ai-710 family of analog test instruments start with 8 MFA channels, with each channel offering Function Generator, Arbitrary Waveform Generator, Digitizer, DMM, Limit Detector, and Timer Counter capability. Options include adding 24 additional channels, offering 32 MFA channels in a single instrument slot. The Ai-710 architecture provides flexible inter-channel triggering to handle the most complex parallel analog applications.

Bi4-Series Bus Test Instruments

Bi4-Series of Serial Bus Test Instruments provide the ultimate Tester-Per-Pin Bus Test Architecture.

Flexible Serial Bus Test Capability. Teradyne’s Bi4-Series instrument is the industry’s first instrument designed specifically for real-time bus test and emulation. The Bi4-Series supports the most common serial bus standards in one instrument slot. It features Teradyne’s latest bus testing technology to provide the ultimate in flexibility for both Board and Box level testing. Using the Bi4-Series architecture ensures complete communications bus access without the need to reconfigure the test system for each application. Each Bi4
has four independent bus modules that support MIL-STD-1553, MIL-STD-1773, TIA/EIA-RS-232, TIA-EIA-RS-422, TIA-EIA-RS-485, ARINC 429 and more. With an innovative load-and-forget programming environment, native support for popular buses and flexibility to emulate custom buses or variations of standard buses, the 2 and 4 module Bi4-Series instruments provide the option to emulate any bus at any time. No need for external electronics. No need for custom circuitry and no need for compromises.

Spectrum Cross-Point Matrix

Provides full cross-point instrument scanning. The optional cross-point matrix is a dedicated high-bandwidth subsystem that can be configured with switch modules and is located in a dedicated chassis for efficient resource distribution. Users can configure the matrix to match immediate needs and reconfigure it as requirements change, while maintaining TPS compatibility. The Spectrum Cross-Point Matrix may be configured with up to 13 modules, combining as many instrument port or matrix channel modules as required. The high-bandwidth 50 MHz matrix accepts instrument port modules with up to 12 coaxial instrument connections per module, while matrix channel modules have up to 64 UUT I/O connections per module. This matrix incorporates separate analog and digital ground planes and separate chassis ground for an extremely quiet switching environment with enhanced signal integrity.

Matrix modules may be directly connected to Teradyne's digital test instruments for hybrid-pin capability (analog and digital resources) at the UUT interface. The combination of hybrid pins and cross-point capability provides flexible and efficient utilization of the tester interface, resulting in reduced hardware costs, reduced program development costs and reduced integration costs.

UUT Power Supplies

The Spectrum-9100 uses Agilent 66000 UUT power supply modules. Each Agilent 66000 can accommodate up to eight modules. Multiple Agilent 66000 chassis can be added to meet application needs or other COTS power supplies can be incorporated.

Expandable Frame, Modular Power and Cooling

The Spectrum-9100 system can be expanded to two, three or more frames. Each frame can have its own power distribution unit (PDU), or draw power from the main frame PDU, but always with the safety of being controlled from a single cut-off point. Within each frame, there is UUT cooling, cable routing areas, and ample room to integrate industry-standard instrumentation, instrument Chassis and user power. The system accepts any of three power distribution units (PDUs) or a combination of the three up to 60 KVA. PDU selection is optimized based on system configuration and load requirements.

Specifications

COMPUTER SYSTEM/INTERFACES
- Industrial rack mount, or personal workstation running Windows XP Professional
- Single or dual flat panel displays
- Choice of integrated or stand-alone PC
- Ethernet interface
- GPIB interface
- MXI-2 interface

INFRASTRUCTURE
- Single, or multiple PDUs in 10 kVA, 20 kVA, or 30 kVA sizes
- Expandable 1, 2, 3 or more frames
- High-performance 5700-Watt VXI chassis
- Choice of single-, double- or triple-tier VPC 90 Series receiver
- Choice of single-tier or double-tier Spectrum-9100 spring probe receiver

Programs Using Teradyne Test Equipment

- U.S. Army standard ATE: IFTE
- U.S. Navy standard ATE: CASS
- USMC standard ATE: TETS
- A-10 FCC TEMS • A-10 avionics
- AC-103U • AWACS radar
- B-1B avionics • B-1B power controls
- B-1B ADTS • B-2 avionics
- C-5 avionics • C-17 avionics
- C-130 avionics • E-8 joint stars
- F-111 avionics • F-15 avionics
- F-16 avionics • F-16 radar
- F-18 avionics • F-22 avionics
- Advanced cruise missile
- AMRamm missile
- Minuteman missile
- EKV – exo-atmospheric kill vehicle
- Javelin missile
- Patriot launcher and missile
- Maverick missile
- Tomahawk missile
- Stinger missile
- NESP satellite
- Trident BSY-1, BSY-2
- Mark 48, 50, 54
- Standard GP date
- Tornado EW-ECM
- Harrier EW-ECM
- Indian Air Force – radar
- Japan Air Force – F-15 avionics
- Korean Air Force – F-15 avionics
- Pakistan Air Force – JF17 avionics
- Taiwan IDF fighter
- Boeing 737-787 avionics
- USPS support equipment
Instrumentation

Di-Series Digital Test Instruments

General Specifications
- Date and clock Rate: 25 MHz (Di-025) and 50 MHz (Di-050 models)
- Channels/VXI Slot: 64 single-ended or 32 differential pairs
- Dynamic Pattern Memory: 256K patterns
- Timing sets: 256
- Pattern Branching: Loops, Branches, Conditionals, Subroutines, Event handlers
- Algorithmic Capabilities: CRC generation, Keep & toggle, Teradyne L-Series compatible MemTest
- Synchronization and Debugging Capabilities: Programmable handshake, External trigger-in, External trigger-out, External clock in & out, VXI TTL trigger bus, Dynamic breakpoints
- External clock Synchronization: DC to 50 MHz
- Drive Phases/ Test Windows: Independent phase & window per channel
- Minimum Pulse Width: 10 ns (5 ns for 100 MHz clock)
- Channels Per Cage: 768
- Virtual Instruments/Cage: 24 max
- Drive Current: Up to 80 mA with programmable limits
- Drive & Detect Levels: ±30 V, 30 V max swing
- Over-voltage Protection: Automatic relay disconnect within 50 µs
- Data Formats: Seven (NR, R0, R1, RZ, RC, RM, SC)
- Driver Slew Rate: 100: 1 adjust range per channel, 1 V/ns maximum
- Control: Guided Probe: Optional
- Operating Range: 0 – 50°C ambient

Digital Sampling Oscilloscope Specification

General Specifications
- Number of Channels: 4 inputs multiplexed to 2 channels

Input Channel Specifications
- Bandwidth: DC to 500 MHz (50 Ω)
 - DC to 100 MHz (1 Ω)

DMM Specification

General Specifications
- Measurement Modes: DCV, ACV, (HI, LO)(Inputs) DCL, ACL, (HI, LO)
- 2-wire Resistance Frequency/Period (HI, LO)
- 4-wire Resistance (HI, LO, Sense HI, Sense LO)
- Voltage Measurements: Up to ±300 volts DC or AC
- Current Measurements: Up to 3 Amps
- Resistance Measurements: Up to ±30 MΩ (full scale)
- Trigger Modes: Start or Arm measurement

AI7-Series Analog Test Instruments

Model Specific
- Ai-705
- Ai-710
- Number of Instruments: 48
 - 192
- Number of Channels: 8
 - 32
- Instruments Per Channel: 6
 - 6
- Matrix Pins: 8
 - 32
- Number of Central DVM: 1
 - 1

Bi4-Series Analog Test Instruments

General Specifications
- Number Concurrent Bus Types: 2 or 4 depending on which Bi4 instrument selected
- Programmable Bit Encoding: Manchester, NRZ, RZ, More
- Maximum Data Transfer Rate: 10 MHz
- Slew Rate: 0.5 to 500 V/ms
- Voltage Range: non-1553 -12 V to +12 V
 - 1553 18 V to 37 V
- Output Impedance (selectable) -5 V to 100 V
- Termination (selectable): -5 V to 100 V

Spectrum Cross-Point Matrix (SCPM)

General Specifications
- Maximum Switching Current: 1 A
- Maximum Switching Voltage: 200 V
- Maximum Switching Power: 30 W
- Initial Series Path Resistance, 18 Ω + (0.3 Ω x number of 64-Channel Matrix Modules in path), typical port-to-channel
- Bandwidth, Channel-to-Channel (-3dB): 300 MHz
- Bandwidth, Port-to-Channel with one instrument module (-3 dB): 38 MHz with 3 channel matrix module
 - 32 MHz with 5 channel matrix modules
- Maximum Number of Modules: 13 (chassis slots)